

MICROCONTROLLERS Feb 24, 2005

The Serial-to-JTAG Board for MAXQ Processors

This application note discusses the commands accepted by the Serial-to-JTAG
board. This board is used to interface with MAXQ microcontrollers. The
commands described here allow developers to read and write to the MAXQ's
memory (code and data), read and write registers, and utilize the in-circuit
debugger.

Introduction
The MAXQ microcontroller incorporates a Test Access Port (TAP) for communication with a host
device across a 4-wire synchronous serial interface. This TAP is used to support in-system
programming and in-circuit debugging. The TAP is compatible to the JTAG IEEE standard 1149. To
connect to the TAP, Dallas Semiconductor developed a Serial-to-JTAG board and firmware that
accept commands over a standard RS-232 serial port and concert these commands to the
appropriate JTAG signals. This application note describes the command protocol implemented by
the firmware. If you need more details on the Serial-To-JTAG board itself, send your questions to
micro.software@dalsemi.com.

Note: This application note assumes familiarity with the MAXQ microcontroller's TAP and basic JTAG
communications. For detailed information regarding these topics, refer to the MAXQ Family User's Guide.

Interfacing with the Firmware
To establish communication with the Serial-to-JTAG board, connect to the board's serial port at
115200 baud, using 8 data bits, no parity, and 1 stop bit. Once connected, you can interface with the
firmware in either of two modes: ASCII or binary. The firmware defaults to ASCII mode where
human readable text commands are sent to the board and the results are returned as text strings. In
binary mode, explained later, all transmissions are a series of 8-bit bytes. There are commands that
allow switching between the two modes at any time. When in ASCII mode, the commands listed in
Table 1 are always available. All commands are case sensitive. Groups of commands can be
entered on a single line, or each command can be entered one at a time.

Table 1. Commands Accepted in Any Mode

Command Description

h Halts the MAXQ by holding it in reset.

H Releases RESET allowing the MAXQ to run.

I
Puts the system into bypass mode and resets the TAP, returning it to the Run-Test-
Idle state.

http://www.maxim-ic.com/appnotes10.cfm/ac_pk/17/ln/en
mailto:micro.software@dalsemi.com

JB

Instructs the firmware to begin accepting background mode commands. This
command does not switch modes on the target MAXQ nor does it send any JTAG
commands to the target device. It is intended only to instruct the firmware that the
MAXQ has changed modes by some other means.

JD

Instructs the firmware to begin accepting debug mode commands. This command
does not switch modes on the target MAXQ nor does it send any JTAG commands to
the target device. It is intended only to instruct the firmware that the MAXQ has
changed modes by some other means.

JL

Instructs the firmware to begin accepting bootstrap loader commands. This command
does not switch modes on the target MAXQ nor does it send any JTAG commands to
the target device. It is intended only to instruct the firmware that the MAXQ has
changed modes by some other means.

JX

Instructs the firmware to begin accepting bypass mode commands. This command
does not switch modes on the target MAXQ nor does it send any JTAG commands to
the target device. It is intended only to instruct the firmware that the MAXQ has
changed modes by some other means.

Q

Queries the interface version number of the JTAG board. The version number will be
output as two hexadecimal characters. This version will change anytime the format of
any command or its output changes. The interface version at the time this document
was written, was 01.

q
Queries the firmware version number of the JTAG board. The version number will be
output as two hexadecimal characters. This version will change anytime the firmware
changes. The firmware version at the time this document was written, was 02.

Vtxxyy

Sets up Timer0 of the JTAG board. As the JTAG clock must be less than 1/8 of the
target's clock, the firmware uses Timer0 to control the speed of the JTAG clock. The
firmware waits for the timer to overflow before generating each edge of the JTAG
clock. Replace 't' with the value to use for the timer's T0M bit, 'xx' with the value to use
for TH0, and 'yy' with the value to use for TL0. All values should be entered in
hexadecimal format. For more information about the purpose of these values, see the
Ultra-High-Speed Flash Microcontroller User's Guide.

Yrbbdd

Sends a value directly to the TAP. Replace 'r' with the TAP register to which you want
to write to: 0 for DR and 1 for IR. 'bb' is the number of bits to write (not including the
status bits) and 'dd' is the data to send. All values should be entered in hexadecimal
format.

Z Switches the firmware to binary transfers.

z Executes a single pulse of the JTAG clock.

+
Performs a simple hardware test of the JTAG board. The CLK, TMS, and TDI pins are
all asserted, and the state of TDO is read and output as a '0' or '1'. The voltage at the
pins can then be measured to ensure that they are functioning properly.

-
Performs a simple hardware test of the JTAG board. The CLK, TMS, and TDI pins are
all set to a logic low, and the state of TDO is read and output as a '0' or '1'. The
voltage at the pins can then be measured to ensure that they are functioning properly.

As indicated by the commands above, there are a few different modes for the MAXQ JTAG engine:
bypass mode, bootstrap loader mode, background mode, and debug mode. The JTAG engine
functions differently in each mode. As a result, in addition to the commands listed above, other
commands become available when the JTAG engine enters these different modes.

Bypass Mode
The TAP initializes to bypass mode during a power-on-reset. In this mode, the TAP is disabled and
does not interact with the rest of the MAXQ microcontroller. To activate the TAP, enter one of the
two additional commands available in this mode: 'D' and 'L'. The 'D' command activates the in-circuit
debugger and the 'L' command activates the bootstrap loader.

Bootstrap Loader Mode
When the bootstrap loader has been activated using the 'L' command, you can send bytes directly to
the MAXQ's utility ROM. Enter each value as two hexadecimal characters. (For more information on
the bytes accepted by the utility ROM, contact micro.software@dalsemi.com.) For each byte
entered, the firmware outputs the byte returned by the loader and the status bits received from the
TAP. The format for the output will be "00xx:ss", where 'xx' is the output byte and 'ss' are the status
bits. Once you enter the "Exit Loader" command (0x01), you must use one of the 'J' commands
listed in Table 1 to instruct the JTAG board that the MAXQ is no longer in bootstrap loader mode.

Background Mode
When in the background mode of the JTAG engine, you can read and write the JTAG breakpoint
registers (BP0-BP5), read and write the in-circuit debug registers (ICDC, ICDF, ICDA, and ICDD),
determine when a breakpoint match has occurred, and invoke debug mode manually. The
commands to support these operations are listed in Table 2. For all the commands in this mode that
have output, the format will be "xxyy:ss", where 'xx' is the MSB of the output data, 'yy' is the LSB,
and 'ss' are the status bits returned by the TAP.

Table 2. Commands Available in Background Mode

Command Description

A Read the ICDA register.

axxyy
Write the ICDA register, where 'xx' is the MSB of the new value and 'yy' is the new
LSB. Values should be entered as two hexadecimal characters.

Bi
Read any of the 6 breakpoint registers, where 'i' is the index of the breakpoint register
to read (0 through 5).

bixxyy
Write any of the 6 breakpoint registers, where 'i' is the index of the breakpoint register
to write (0 through 5), 'xx' is the MSB of the new value, and 'yy' is the LSB. The MSB
and LSB values should be entered as two hexadecimal characters.

C Read the ICDC register.

cxx
Write the ICDC register, where 'xx' is the new value. Values should be entered as two
hexadecimal characters.

mailto:micro.software@dalsemi.com

D Read the ICDD register.

dxxyy
Write the ICDD register, where 'xx' is the MSB of the new value and 'yy' is the new
LSB. Values should be entered as two hexadecimal characters.

E Enter debug mode.

F Read the ICDF register.

N No operation.

Debug Mode
There are two ways the JTAG engine can enter debug mode. The first way is to enter the "Enter
debug mode" command ("E") while in background mode. The second way debug is activated occurs
when a breakpoint match occurs. In this case, you should enter the "JD" command to inform the
firmware that the mode has changed. Once in debug mode, you can read and write the MAXQ
registers, read the program stack, read and write data memory, single step the MAXQ CPU, return
to background mode, and perform a password match to unlock certain commands. Table 3 lists the
commands supporting this functionality.

Table 3. Commands Available in Debug Mode

Command Description

E Exit debug mode, return to background mode.

G
Gets all registers. The order of the registers returned depends on the type of MAXQ
device.

Mxxyyiijj
Read data memory, where 'xx' is the MSB of the word address to read, 'yy' is the LSB
of the address, 'ii' is the MSB of the number of words to read, and 'jj' is the LSB of the
length. All values should be entered as two hexadecimal characters.

mxxyyiijj
Write a word to data memory, where 'xx' is the MSB of the word address, 'yy' is the
LSB of the address, 'ii' is the MSB of the word to be written, and 'jj' is the LSB of the
word to be written. All values should be entered as two hexadecimal characters.

n No operation.

Pxx1...xx32
Attempt a password match with the given data. All 32 values should be entered as two
hexadecimal characters.

R0iim
Read a register, where 'ii' is the register's index and 'm' is the register's module. The
index should be entered as two hexadecimal characters, and the module should be
entered as a single hexadecimal character.

r0iimxxyy

Write a register, where 'ii' is the register's index, 'm' is the register's module, 'xx' is the
MSB of the new value, and 'yy' is the LSB. The index and each byte of the new value
should be entered as two hexadecimal characters. The module should be entered as
a single hexadecimal character.

Sxxyyiijj
Read the program stack, where 'xx' is the MSB of the word address to read, 'yy' is the
LSB of the address, 'ii' is the MSB of the number of words to read, and 'jj' is the LSB of
the length. All values should be entered as two hexadecimal characters.

T Execute the instruction at the current instruction pointer.

Note: All background mode commands listed in Table 2 (except 'E') can also be used while in Debug Mode.

Binary Transfers
All the commands described in Tables 1, 2, and 3 are easily entered manually and their outputs are
easily understood. In many cases, however there will be software controlling the JTAG board.
Because the ASCII commands are not conveniently used by software and there is unnecessary
processing required in converting the results back into binary data, the JTAG firmware also supports
binary transfers. When binary transfer mode, data is sent to the TAP by first sending a byte that
indicates the number of bytes being sent. The data should then follow. For every byte of data sent,
the firmware outputs two bytes. The first byte returned is the status bits that were read during the
transfer. The second byte will hold the value read from the TAP during the transfer. There are also
special commands that can be sent while in binary mode. These commands are described in Table
4. To send one of these special commands, send a 0 for the length byte. This instructs the firmware
to treat the next byte received as a special command. For these special commands, a single byte is
returned. Typically this will just be an echo of the command.

Table 4. Special Commands Used in Binary Transmissions

Command Description

0x00 Exit binary mode transfers and return to accepting ASCII commands.

0x01 Set the TAP's IR register as the destination for data transfers.

0x02 Set the TAP's DR register as the destination for data transfers.

0x03 Send only the lowest 3 bits of each byte when transferring data.

0x04 Set the RESET pin to a logic high.

0x05 Clear the RESET pin to a logic low.

0x06 Execute a single pulse of the JTAG clock.

0x07 Read the state of the TDO pin.

0x08 Send all 8 bits of each byte when transferring data.

0x09 Set the TMS pin to a logic high.

0x0A Clear the TMS pin to a logic low.

0x0B Set the TDI pin to a logic high.

0x0C Clear the TDI pin to a logic low.

0x0D
Set the T0M bit. For more information on this bit, refer to the 'V' command described
in Table 1.

0x0E
Clear the T0M bit. For more information on this bit, refer to the 'V' command described
in Table 1.

0x11
Use the next byte received as the value for TL0. This "next" byte does not require a
length byte or the '0' used as the special-command escape character. For more
information of the TL0 register, refer to the 'V" command described in Table 1.

0x12
Use the next byte received as the value for TH0. This "next" byte does not require a
length byte or the '0' used as the special command escape character. For more
information of the TH0 register, refer to the 'V" command described in Table 1.

Detecting Errors
In both the ASCII transfer mode and the binary transfer mode, any errors that occur are indicated by
the output from the commands. In ASCII mode errors will be output as "*ERR=xx*", where xx
indicates the type of error that occurred. In binary mode the error code is output instead of the
command echo. Refer to Table 5 for the description of the possible error codes.

Table 5. Error Codes

Error Code Description

0x80 Command not recognized or invalid command.

0x90 Received an invalid hexadecimal character.

0xA0 Not enough input received.

0xB0 Bad breakpoint register index.

0xC? Received unexpected status, where ? represents the status bits received.

Conclusion
Using the commands described in this document, the Serial-To-JTAG board can be used to load
code into MAXQ processors, read and write system registers, read and write memory, and utilize the
in-circuit debugger. This process can either be automated through host software using the binary
protocol or entered interactively with a terminal program. Building blocks for all the commands
needed to fully control a MAXQ system have been provided.

